حل نظام من معادلتين خطيتين بيانيا

حل نظام من معادلتين خطيتين بيانيا، جاء علم الرياضيات وقدم للبشرية الكثير من الحلول لمختلف المشكلات التي تواجه البشر، ومن خلاله تم ابتكار العديد من  الأساليب والتي تُمكّننا من حل المعادلات بالكثير من الطرق السهلة والبسيطة، والتي تتطلب منا اتّباع بعض الخطوات الصحيحة للوصول إلى حلول نهائية للمعادلات، فما هي تلك الطرق، وكيف يمكن استعمالها بهدف حل نظام من مُعادلتين، سوف يقدم لنا موقع المرجع هذا المقال للإجابة عن سؤالنا ومعرفة المزيد عن حل مجموعة من المُعادلات بيانيّاً.

حل نظام من معادلتين خطيتين بيانيا

لدينا المعادلتين الخطّيتين التاليتين، الأولى ص=-٢س+٣، والمعادلة الثانية ص=س-٥، وهاتان معدلتان من الدرجة الأولى بمجهولين، ولحلهما بيانياً نحتاج إلى معرفة ما هي نقطة تقاطع المستقيمين اللذان يعبران عن كل منهما، إن حل هذا النظام هو حل وحيد، يمكن معرفته من خلال تعويض القيمة صفر بدلاً من أحد المجهولين، وحساب الآخر باستخدام إحدى المعادلتين، وبتعويض قيمة ص=٠ فإن س=-٥، أي أنه الحل الوحيد لهذا النظام هو:[1]

  • حل نظام من معادلتين خطيتين بيانيا، المعادلة الأولى ص=-٢س+٣، والمعادلة الثانية ص=س-٥، هو (٠،-٥).

شاهد أيضًا: ما العلاقة بين تطور علم الرياضيات وظهور الحاسوب

حل نظام من معادلتين خطيتين بالحذف باستعمال الضرب

هناك طرق جبرية لحلّ المعادلات الخطية، تستعمل هذه الأساليب البسيطة في حل تلك المعادلات بطرق سريعة وسهلة، وهذا ما جعل إدخالها في النظام التدريسي للطلاب غير المختصين أنراً سهلاً، وإحدى تلك الأساليب هي طريقة الحذف باستعمال الضرب، مثال: يوحد لدينا المعادلتين: المعادلة الأولى ٦س-٢ص=١٠، والمعادلة الثانية ٣س-٧ص=-١٩، ولحل هاتين المعادلتين بطريقة الحذف باستعمال الضرب، نقوم بضرب المعادلة الثانية ب٢، وذلك لنحصل على قيمة تساوي ٦س، وتكون النتيجة: ٦س-١٤ص=-٣٨، نطرح المعادلتين الأولى والأخيرة، ونحصل على معادلة بمجهول واحد، وهو ١٢ص=٤٨، وحلها هو ص=٤، نعوض هذه القيمة في المعادلة الأولى أو الثانية لنحصل على قيمة س=٣، وهكذا نكون حسبنا قيمة المجهولين س، ص، بطريقة الحذف باستخدام الضرب.

إلى هنا، نكون قد أنهينا مقالنا والذي عرفنا أن حل نظام من معادلتين خطّيتين بيانيا، المعادلة الأولى ص=-٢س+٣، والمعادلة الثانية ص=س-٥، هو (٠،-٥)، وأعطينا مثالاً عن حل نظام من معادلتين خطّيتين بِالحذف باستعمال الضّرب.

المراجع

  1. opentextbc.ca , 40 Solve Systems of Equations by Graphing , 05/12/2021

الزوار شاهدوا أيضاً

050505… مجموعات الاعداد التي ينتمي اليها العدد الحقيقي التالي هي

050505… مجموعات الاعداد التي ينتمي اليها العدد الحقيقي التالي هي

أنفق ماجد ٢٠,٢٥ ريالا، ثم أنفق ٢٥,٧٥ رياًلا، ثم أنفق ٢٢,٥ ريالا خلال الرحلة المدرسية، فأعطاه والده ثلاثة أمثال ماأنفق تقريبا

أنفق ماجد ٢٠,٢٥ ريالا، ثم أنفق ٢٥,٧٥ رياًلا، ثم أنفق ٢٢,٥ ريالا خلال الرحلة المدرسية، فأعطاه والده ثلاثة أمثال ماأنفق تقريبا

يوجد في المكتبة ٥ أرفف على كل منها ٢٣ كتابا

يوجد في المكتبة ٥ أرفف على كل منها ٢٣ كتابا

العدد الصحيح الذي يمثل ٨ س تحت الصفر

العدد الصحيح الذي يمثل ٨ س تحت الصفر

جمعت سلمى ٣٢ صدفه وجمعت منها عددا من الاصداف

جمعت سلمى ٣٢ صدفه وجمعت منها عددا من الاصداف

إذاكان للنظام حل واحد فقط يسمى

إذاكان للنظام حل واحد فقط يسمى

البيانات التالية توضح كتل سته اصدقاء

البيانات التالية توضح كتل سته اصدقاء

حل سؤال قيمة ٥٢ تساوي

حل سؤال قيمة ٥٢ تساوي

ثلاث ارباع كم يساوي

ثلاث ارباع كم يساوي

قيمة المميز في المعادلة التربيعية التالية هو ٣س٢ س ٣

قيمة المميز في المعادلة التربيعية التالية هو ٣س٢ س ٣

طائرة على ارتفاع ٤٥٠ مترا فوق سطح البحر، وغواصة على عمق ٢٦٠ متر تحت سطح البحر. البعد بينهما يساوي

طائرة على ارتفاع ٤٥٠ مترا فوق سطح البحر، وغواصة على عمق ٢٦٠ متر تحت سطح البحر. البعد بينهما يساوي

اي عمليات الضرب الاتيه تحتاج الى اعادة تجميع

اي عمليات الضرب الاتيه تحتاج الى اعادة تجميع

انفق ماجد ٢٠،٢٥ ثم انفق ٢٥،٧٥ ريالا ثم انفق ٢٢

انفق ماجد ٢٠،٢٥ ثم انفق ٢٥،٧٥ ريالا ثم انفق ٢٢

اوجد 5 من 300

اوجد 5 من 300

استعمل متر من القماش لصنع رايتين للمدرسة كم تحتاج كل راية من القماش

استعمل متر من القماش لصنع رايتين للمدرسة كم تحتاج كل راية من القماش

النظير الضربي للعدد 7 هو

النظير الضربي للعدد 7 هو

ماالعدد الذي يساوي ٢٥ % من ١٨٠

ماالعدد الذي يساوي ٢٥ % من ١٨٠

قيمة س التي تجعل التناسب صحيحا

قيمة س التي تجعل التناسب صحيحا

عدد مرات الطرح للجملة ٣÷١٢ حتى نصل الى الصفر هي

عدد مرات الطرح للجملة ٣÷١٢ حتى نصل الى الصفر هي

معادله القيمه المطلقه الممثله بيانيا هي

معادله القيمه المطلقه الممثله بيانيا هي

التعليقات

اترك تعليقاً

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *